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A solution procedure for studying the dynamic responses of a non-uniform
Timoshenko beam with general time-dependent boundary conditions is developed
by generalizing the method of Mindlin–Goodman and utilizing the exact solutions
of non-uniform Timoshenko beam vibration given by Lee and Lin. A general
change of dependent variable with shifting functions is introduced and the
physical meanings of these shifting functions are further explored. The
orthogonality condition for the eigenfunctions of a non-uniform Timoshenko
beam with elastic boundary conditions is also derived. Several limiting cases and
their corresponding procedures are revealed. Finally, the influence of the spring
constant on the steady response of a beam subjected to a harmonic base excitation
is investigated.
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1. INTRODUCTION

In many structural fields such as the aircraft and space structures under ground
vibration testing, a building, a bridge and a highway construction subjected to an
earthquake, the vibration of a structure can be mathematically modelled as the
transverse vibration of a beam subjected to time-dependent support motion.

The vibrational problem has been studied by many investigators via
Bernoulli–Euler and Timoshenko beam theory, respectively. The vibration of a
uniform Bernoulli–Euler beam with classical time dependent boundary conditions
can be solved by using the method of Laplace transform [1, 2] and the method of
Mindlin–Goodman [3–6]. In the Mindlin–Goodman method, a change of
dependent variable together with four shifting polynomial functions of the fifth
order is introduced. In general, by properly selecting these shifting polynomial
functions, the original system will be transformed to be a system composed of a
non-homogeneous governing differential equation and four homogeneous
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boundary conditions. Consequently, the method of separation of variables was
used to solve the problem. Edstrom [4] pointed out that if a properly chosen
change of dependent variable is made, an original system composed of a
homogeneous governing differential equation and four non-homogeneous
boundary conditions will be transformed to be a system composed of a
homogeneous governing differential equation and four homogeneous boundary
conditions. However, the method is not suitable for the system subjected to
transverse forces. Recently, the dynamic analysis of non-uniform Bernoulli–Euler
beams with time dependent elastic boundary conditions was given by Lee and Lin
[7]. They generalized the method of Mindlin–Goodman and introduced four
shifting polynomial functions of the third degree, instead of the polynomial
functions of the fifth degree given by Mindlin and Goodman [3]. The physical
meanings of those shifting functions were provided. Nevertheless, the physical
meanings of those shifting functions are suitable for uniform beam system and are
not consistent with non-uniform beam systems.

The vibration of uniform Timoshenko beams with classical time dependent
boundary conditions was studied by Herrmann [8, 9] and Berry and Naghdi [10]
by using the method of Mindlin and Goodman [3]. However, in their studies
polynomial functions were chosen as shifting functions and were required to
satisfy the boundary conditions only. Hence, the shifting functions did not have
any physical meanings, and no general form was given for various kind of
boundary conditions. In addition, the method will lead to considerable difficulties
when taking the limiting study from the Timoshenko beam theory to the
Bernoulli–Euler beam theory.

In this paper, the previous study made by Lee and Lin [7] is extended and the
method of Mindlin–Goodman further generalized to develop a solution procedure
for studying the vibrations of a non-uniform Timoshenko beam with general
time-dependent boundary conditions. First, the time-dependent elastic boundary
conditions are formulated. A general change of dependent variable with shifting
functions is introduced. Shifting functions are selected which are justified for the
non-uniform beam system and different from those given by Herrmann [9] and Lee
and Lin [7]. The physical meanings of these shifting polynomial functions are
explored. In addition, the work done by Dolph [11] who derived the orthogonality
condition for the eigenfunctions of a uniform Timoshenko beam with classical
boundary conditions is extended, and the orthogonality condition for the
eigenfunctions of a non-uniform Timoshenko beam with elastic boundary
conditions is derived. The limiting study from the Timoshenko beam theory to the
Bernoulli–Euler beam theory is also revealed. With the present approach, the
difficulties, in the Herrmann [9] and Berry and Nagdhi [10] approach, in taking
the limiting study are overcome. Finally, several limiting cases are examined.

2. NON-UNIFORM TIMOSHENKO BEAMS

Consider a non-uniform Timoshenko beam with time-dependent elastic
boundary conditions, as shown in Figure 1. The following dimensionless quantities
are introduced,
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Figure 1. Geometry and co-ordinate system of a non-uniform Timoshenko beam with time
dependent elastic boundary conditions, subjected to transverse force and distributed moment.

b(j)=E(x)I(x)/E(0)I(0), f1(t)=F1(t), f2(t)=F2(t)/L, f3(t)=F3(t),

f4(t)=F4(t)/L, f*1 (t)=F*1 (t)L/E(0)I(0),

f*2 (t)=F*2 (t)L2/E(0)I(0), f*3 (t)=F*3 (t)L/E(0)I(0),

f*4 (t)=F*4 (t)L2/E(0)I(0),

m(j)= r(x)A(x)/r(0)A(0), m̄(j, t)=M(x, t)L2/E(0)I(0),

p(j, t)=P(x, t)L3/E(0)I(0), q(j)= J(x)/J(0),

s(j)= k(x)G(x)A(x)/k(0)G(0)A(0), w(j, t)=W(x, t)/L,

b1 =KuLL/E(0)I(0), b2 =KTLL3/E(0)I(0), b3 =KuRL/E(0)I(0),

b4 =KTRL3/E(0)I(0), t=(t/L2)zE(0)I(0)/r(0)A(0),

j= x/L, h= J(0)/r(0)A(0)L2, m=E(0)I(0)/k(0)G(0)A(0)L2. (1)

The two coupled dimensionless governing differential equations of the system
are

−1/1j[(s(j)/m)(1w/1j−C)]+m(j) 12w/1t2 = p(j, t), (2)

(1/1j)[b(j) 1C/1j]+ (s(j)/m)(1w/1j−C)− hq(j) 12C/1t2 =−m̄(j, t). (3)

At j=0:

1C/1j− b1C=−b1f1(t)− f*1 (t), (4)

−(1/m)(1w/1j−C)+ b2w= b2f2(t)+ f*2 (t); (5)

at j=1:

b 1C/1j− b3C= b3f3(t)+ f*3 (t), (s/m)(1w/1j−C)+ b4w= b4f4(t)+ f*4 (t),

(6, 7)
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and the associated dimensionless initial conditions of the motion are

w(j, 0)=w0(j), C(j, 0)=C0(j), 1w(j, 0)/1t= ẇ0(j), (8–10)

1C(j, 0)/1t=C� 0(j), (11)

where w(x, t) is the flexural displacement, C is the angle of rotation due to
bending, G(x) is the shear modulus, E(x) is the Young’s modulus and k is the shear
correction factor, x is the co-ordinate along the beam, t is time and L is the length
of the beam. I(x), J(x) and A(x) denote the area moment of inertia, the mass
moment of inertia per unit length about the neutral axis and the cross sectional
area, respectively. r(x) is the mass density per unit volume and P(x, t) and M(x, t)
are the applied transverse force and distributed moment per unit length,
respectively. F1(t), F2(t), F*1 (t) and F*2 (t) and F3(t), F4(t), F*3 (t) and F*4 (t) are the
slope, the displacement, the external moment and the shear force excitations at
the left end and the right end of the beam, respectively. KTL and KuL and KTR and
KuR are the translational spring constants and the rotational spring constants at
the left end and the right end of the beam, respectively. w0(j), c0(j), ẇ0(j), and
C� 0(j) are four prescribed dimensionless initial functions.

When the dimensionless translational spring constant is infinity or zero, the time
dependent displacement or the time dependent shear force is prescribed. If the
dimensionless rotational spring constant is infinity or zero, then the time
dependent angle of rotation due to bending or the time dependent moment is
prescribed.

3. SOLUTION METHOD

3.1.   

To find the solution for these differential equations with variable coefficients and
non-homogeneous elastic boundary conditions, one generalizes the method given
by Mindlin and Goodman [3] and Herrmann [9] by taking

w(j, t)= v(j, t)+ s
4

i=1

f�i (t)gi (j), C(j, t)=8(j, t)+ s
4

i=1

f�i (t)ḡi (j),

(12, 13)

where

f�i (t)= (bi /[1+ bi ])fi (t)+ (1/[1+ b1])f*i (t), i=1, 2, 3, 4, (14)

and the shifting functions gi (j) and ḡi (j), i=1, 2, 3, 4, are chosen to satisfy the
following two differential equations

d
dj $s(j)

m 0dgi

dj
− ḡi1%=0,

d
dj $b(j)

dḡi

dj%+
s(j)
m 0dgi

dj
− ḡi1=0, i=1, 2, 3, 4

(15, 16)
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and the boundary conditions:

b1

1+ b1
ḡi −

1
1+ b1

dḡi

dj bj=0

= di1,
b2

1+ b2
gi +

1
1+ b2

d
dj $b(j)

dḡi

dj%bj=0

= di2,

(17, 18)

b3

1+ b3
ḡi +

b
1+ b3

dḡi

dj bj=1

= di3,
b4

1+ b4
gi −

1
1+ b4

d
dj $b(j)

dḡi

dj%bj=1

= di4,

(19, 20)

where dij is a Kronecker symbol. After substituting equations (12–20) into
equations (2–11), one has the following differential equations in terms of v(j, t)
and 8(j, t),

−(1/1j)[(s(j)/m)(1v/1j−8)]+m(j) 12v/1t2 = p1(j, t), (21)

(1/1j)[b(j) 18/1j]+ s(j)/m(1v/1j−8)− hq(j) 128/1t2 = p2(j, t), (22)

where

p1(j, t)= p(j, t)− s
4

i=1

m(j)gi (j)
d2f�i

dt2, (23)

p2(j, t)=−m̄(j, t)+ s
4

i=1

hq(j)ḡi (j)
d2f�i

dt2, (24)

and the associated homogeneous boundary conditions:

at j=0:

18/1j− b18=0, (−1/m)(1v/1j−8)+ b2v=0; (25, 26)

and at j=1:

b 18/1j+ b38=0, (s/m)(1v/1j−8)+ b4v=0. (27, 28)

The transformed initial conditions (8–11) become

v(j, 0)=w0(j)− s
4

i=1

f�i (0)gi (j), 8(j, 0)=C0(j)− s
4

i=1

f�i (0)ḡi (j), (29, 30)

1v(j, 0)
1t

= ẇ0(j)− s
4

i=1

df�i (0)
dt

gi (j),
18(j, 0)

1t
=C� 0(j)− s

4

i=1

df�i (0)
dt

ḡi (j).

(31, 32)
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It should be mentioned that if the beam is uniform and the elastic spring
constants bi are set to be infinity or zero, then equations (2–14) and (17–20) reduce
to those given by Herrmann [9].

3.2.      

The shifting functions gi (j) and ḡi (j) which satisfy equations (15–16) can be
written as

ḡi (j)=g
j

0

2ai,2 + 6ai,3z

b(z)
dz+ ai,1 + 6mai,3, (33)

gi (j)=g
j

0

[ḡi (z)−6mai,3/s(z)] dz+ ai,0, i=1, 2, 3, 4, (34)

where ai,0, ai,1, ai,2 and ai,3 are constants to be specified from the boundary
conditions, equations (17–20). These constants for the general and limiting cases
are derived and listed in the Appendix.

The shifting functions gi (j) and ḡi (j), i=1, 2, 3, 4 can be interpreted as the
static deflection and the angle of rotation due to bending of a generally elastically
restrained non-uniform Timoshenko beam subjected only to a unit moment and
a unit slope of the base at the left end, a unit shear force and a unit displacement
of the base at the left end, a unit moment and a unit slope of the base at the right
end and a unit shear force and a unit displacement of the base at the right end
of the beam, respectively.

3.3.     

When the beam is uniform, then b(j)=1 and s(j)=1. The shifting functions
(33–34) become

gi (j)= ai,0 + ai,1j+ ai,2j
2 + ai,3j

3, (35)

ḡi (j)= ai,1 + 6mai,3 + 2ai,2j+3ai,3j
2, i=1, 2, 3, 4. (36)

It should be mentioned that the shifting functions gi (j) and ḡi (j) in Herrmann’s
approach are two individual polynomials and are required to satisfy the typical
elastic boundary conditions which are the limiting cases of the present study
(17–20). Those shifting functions do not have any physical meanings and will lead
to considerable difficulties when taking the limiting study from Timoshenko beam
theory to Bernoulli–Euler beam theory. In the present approach they are required
to satisfy both the differential equations (15–16) and the boundary conditions
(17–20). The shifting functions have only four constants to be determined and are
simpler than those given by Herrmann [9]. They can also be used to cover the very
general case. In addition, these shifting functions take physical meanings.

3.4.  

The solution for equations (21–32), v(j, t) and 8(j, t) can be obtained by using
the method of eigenfunction expansion. The eigenfunctions are specified by the
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associated homogeneous governing differential equations and homogenous
boundary conditions.

To derive the orthogonality condition of the eigenfunctions of the system, one
lets v2

n be the nth eigenvalue or the square of the nth natural frequency and
[vn (j)8n (j)]T be the nth eigenfunction of the system, where the superscript T is the
symbol of the transpose of a matrix. The governing characteristic differential
equation can be expressed as

{[L]+v2
n [M]}$vn (j)

8n (j)%=0, (37)

where the differential operators [L] and [M] are

[L]=$(d/dj)[(s(j)/m)(d/dj)]
(s(j)/m) d/dj

−(d/dj)[s(j)/m]
(d/dj)[b(j) d/dj]− s(j)/m%, (38)

and

[M]=$m(j)
0

0
hq(j)%, (39)

respectively. The eigenfunctions satisfy the boundary conditions (25–28). It can be
observed that equations (37) and the associated boundary conditions take the
meaning of the free vibration of an elastically restrained non-uniform Timoshenko
beam. The eigenfunctions and the eigenvalues can be obtained by using the
method proposed by Lee and Lin [12]. They decoupled the coupled differential
equations into two complete fourth order differential equations in the flexural
displacement and in the angle of rotation due to bending, respectively. It was
shown that if the geometric and the material properties of the beam can be
expressed in polynomial forms, then the exact solutions of the system can be
obtained.

Taking the inner product, one can easily show that

g
1

0

[vj (j)8j (j)][M]$vn (j)
8n (j)% dj=g

1

0

[vn (j)8n (j)][M]$vj (j)
8j (j)% dj, (40)

g
1

0

[vj (j)8j (j)][L]$vn (j)
8n (j)% dj=g

1

0

[vn (j)8n (j)][L]$vj (j)
8j (j)% dj

+ {vj [(s/m)(dvn /dj−8n )]− vn [(s/m)(dvj /dj−8j )]}=10

+ b{8j d8n /dj−8n d8j /dj}=10. (41)
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The two boundary terms in equation (41) vanish because of the boundary
conditions (25–28). Thus the self-adjointness of the system is proved.
Consequently, the following orthogonality condition is proved

g
1

0

[vj (j)8j (j)]$m(j)
0

0
hq(j)%$vn (j)

8n (j)% dj=60,
en ,

j$ n,
j= n,7 (42)

where en is a real number. For a uniform beam, m(j)=1 and hq(j)= h, and the
orthogonality condition (42) becomes the same as that given by Dolph [11].

3.5.   

The solution v(j, t) and 8(j, t) specified by equations (21–32) can be expressed
in the following eigenfunction expansion form

$v(j, t)
8(j, t)%= s

a

n=0

Tn (t)$vn (j)
8n (j)%. (43)

Substituting it back to the governing equations (21–22) and the initial conditions
(29–32), multiplying by [vn (j)8n (j)] and integrating in accordance with the
orthogonality condition (42), one obtains

d2Tn

dt2 +v2
nTn =

−1
en g

1

0

[vn (j)p1(j, t)+8n (j)p2(j, t)] dj. (44)

The corresponding initial conditions are

Tn (0)=
1
en g

1

0

[m(j)vn (j)v(j, 0)+ hq(j)8n (j)8(j, 0)] dj, (45)

dTn (0)
dt

=
1
en g

1

0

[m(j)vn (j)
1v(j, 0)

1t
+ hq(j)8n (j)

18(j, 0)
1t

] dj. (46)

The solution is

Tn (t)=Tn (0) cos vnt+
1
vn

dTn (0)
dt

sin vnt+
1
vn g

t

0

p*n (z) sin vn (t− z) dz, (47)

where p*n (t) is the forced term in equation (44). After substituting equation (47)
back to equation (43), finally, the general forced response of the beam with time
dependent boundary conditions is obtained by substituting the shifting functions
(33–34) and the solution (43) into equations (12–14). This completes the solution
of the system.

It should be mentioned that the static deflection of a non-uniform Timoshenko
beam with non-homogenous boundary conditions can also be obtained through
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the dynamic solution by eliminating the time dependent parameters and terms in
the solution procedures.

4. BERNOULLI–EULER BEAMS

For a Bernoulli–Euler beam, the shear deformation and the rotatory inertia are
not considered, i.e., h and m approach zero. Equations (3) and (22) are reduced
to the following two representations for the shear force and the transformed shear
force

s(j)
m 01w

1j
−C1=−

1

1j $b(j)
1C

1j%− m̄(j, t), (48)

s(j)
m 01v

1j
−81=−

1

1j $b(j)
18

1j%− m̄(j, t). (49)

Without considering the applied distributed moment and substituting equation
(48) into equation (2) and the boundary conditions (4–7), gives the governing
differential equation and the boundary conditions of a non-uniform Bernoulli–
Euler beam with time dependent elastic boundary conditions. They are exactly the
same as those given by Lee and Lin [7].

From equation (34), it is also observed that the first derivative of the shifting
function gi (j) is equal to ḡi (j)

dgi (j)/dj= ḡi (j). (50)

From equations (12–13) and (50) and the Bernoulli–Euler beam theory (in which
the angle of rotation due to bending is equal to the slope of the beam), one has

1v(j, t)/1j=8(j, t), (51)

which can be alternatively obtained from equation (49).
Applying the relations (48–51) to equations (21–32), the governing differential

equation for the transformed variable v(j, t) is reduced to

(12/1j2)[b(j) 12v/1j2]+m(j)(12v/1t2)= p1(j, t)− 1m̄(j, t)/1j, (52)

the associated boundary conditions are

at j=0:

12v/1j2 − b1 1v/1j=0, (1/1j)(b(j) 12v/1j2)+ b2v=0; (53, 54)

at j=1:

b 12v/1j2 + b3 1v/1j=0, − (1/1j)(b(j) 12v/1j2)+ b4v=0, (55, 56)

and the associated initial conditions are

v(j, 0)=w0(j)− s
4

i=1

f�i (0)gi (j),
1v(j, 0)

1t
= ẇ0(j)− s

4

i=1

df�i (0)
dt

gi (j), (57, 58)
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The shifting functions gi (j), i=1, 2, 3, 4, can be obtained from those of
Timoshenko beams by letting m=0 and the solution v can be obtained by the
solution method developed by Lee and Kuo [13] or the method of eigenfunction
expansion reduced from equations (43–47).

5. VERIFICATION AND EXAMPLES

To verify the previous analysis, two examples are illustrated.
Example 1: Consider the vibration of a simply supported uniform beam subjected
to a step moment excitation at the left end of the beam with the following initial
conditions

w(j, 0)=C(j, 0)= 1w(j, 0)/1t= 1C(j, 0)/1t=0. (59)

The end excitation functions are

f1 = f2 = f3 = f4 = f*2 = f*3 = f*4 =0, f�1 = f*1 =6 0,
−a,

tQ 0,
te 0,7 (60)

where a is a positive constant. The associated shifting functions gi (j) and ḡi (j),
i=1, 2, 3, 4, are those listed on case 2 of the Appendix. The governing
characteristic equation (37) now is

6$(1/m) d2/dj2

(1/m) d/dj

(−1/m) d/dj

d2/dj2 −1/m%+v2
n$10 0

h%7$vn (j)
8n (j)%=0, (61)

and the associated boundary conditions are

at j=0:

18n /1j=0, vn =0, (62, 63)

at j=1:

18n /1j=0, vn =0. (64, 65)

Following the method developed by Lee and Lin [12], the eigenvalues can be
obtained

vn,1 = ([n2p2(h+ m)+1]+z[n2p2(h+ m)+1]−4hmn4p4)/2hm, (66a)

vn,2 = ([n2p2(h+ m)+1]−z[n2p2(h+ m)+1]−4hmn4p4)/2hm, n=0, 1, 2, . . .

(66b)

and the associated eigenfunctions are

8n (j)=−cos npj, vn,i (j)=
np

mv2
n,i − n2p2 sin npj,

i=1, 2 n=0, 1, 2, . . . (67a, b)
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When the external load p(j, t) and the external moment m̄(j, t) are assumed to
be zero, the displacement and the angle of rotation due to bending can be obtained,
respectively

C=−a6(1
3 + m− j+ 1

2j
2)− m cos v0,1t

+2 s
a

n=1

cos npj s
2

i=1

(mv2
n,i − n2p2)[1− h(mv2

n,i − n2p2)]
n2p2[n2p2 + h(mv2

n,i − n2p2)2]
cos vn,it7, (68a)

w(j, t)=−a61
3j− 1

2j
2 + 1

6j
3

−2 s
a

n=1

sin npj s
2

i=1

1− h(mv2
n,i − n2p2)

np[n2p2 + h(mv2
n,i − n2p2)2]

cos vn,it7. (68b)

These solutions are the same as those given by Berry and Naghdi [10].
Example 2: Consider the vibration of a clamped–elastically restrained
non-uniform beam with constant width and linearly varying depth, subjected to
a harmonic base excitation at the right end of the beam. The dimensionless
material properties, applied transverse force and moment are

m(j)= s(j)=1+ lj, b(j)= q(j)= (1+ lj)3, m̄(j, t)= p(j, t)=0.

(69)

Figure 2. The influence of the translational spring constant b4 on the amplitude of steady response
at the right end of the non-uniform beam subjected to harmonic base excitation (b1, b2:a, b3 =0,
b= q=(1−0·1j)3, m= s=(1−0·1j), g0 =0·1): Key: ——, h=0·01, m=0·0312; ----, h= m=0.
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The excitation functions are

f1 = f2 = f3 = f*1 = f*2 = f*3 = f*4 = f�1 = f�2 = f�3 =0, f�4 = f4 = g0 sin (vt).

(70)

The associated shifting functions gi , i=1, 2, 3, 4 are those listed in case 1 of the
Appendix.

In Figure 2, the influence of the translational spring constant b4 on the
amplitude of steady response at the right end of the non-uniform beam subjected
to harmonic base excitation is illustrated. When b4 is zero, there is no influence
of the excitation on the vibration of the beam. When b4 is increased, the amplitude
is evidently increased. When b4 approaches infinity, the amplitude of the tip of the
beam is the same as that of the excitation. Given the translational spring constant
b4, the higher the frequency of the excitation, the lower the amplitude of the tip
of the beam. There is almost no difference of the above response between a
Timoshenko beam and a Bernoulli–Euler beam.

6. CONCLUSION

A systematic solution procedure for studying the dynamic responses of a
non-uniform Timoshenko beam with general time-dependent elastic boundary
conditions has been developed by generalizing the method of Mindlin–Goodman
and utilizing the exact solutions of non-uniform Timoshenko beam vibration given
by Lee and Lin. A general change of dependent variable with shifting functions
is introduced and the physical meanings of these shifting functions are explored.
The dynamic responses of a non-uniform Bernoulli–Euler beam can be obtained
easily just by taking a suitable limiting procedure. Meanwhile, the physical
meanings of the reduced corresponding shifting functions do exist. The
self-adjointness of a Timoshenko beam system is proved. The orthogonality
condition for the eigenfunctions of a non-uniform Timoshenko beam with elastic
boundary conditions is also derived. The static deflection of a non-uniform
Timoshenko beam with non-homogenous boundary conditions can also be
obtained from the dynamic solution by eliminating the time dependent parameters
and terms in the solution procedures. There is almost no difference of the steady
response between a Timoshenko beam and a Bernoulli–Euler beam subjected to
a harmonic base excitation.
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APPENDIX: SHIFTING FUNCTIONS

 1:  

In this case, b1, b2, b3 and b4 are constant, the coefficients of the shifting
functions are

a1,0 =6g22(g31A3 − g41A1)/H, a1,1 = {g21(A2A3 −A1A4)+6g22g41A1]}/H,

a1,2 = [g21(g31A4 − g41A2)−6g22g31g41]/H, a1,3 = g21(g41A1 − g31A3)/H;

a2,0 = [g11(A2A3 −A1A4)+2g12(g31A4 − g41A2)+6mg11(g31A3 − g41A1)]/H,

a2,1 =−g41(2g12A2 +6mg11A1)/H, a2,2 =−g11g41(A2 −6mg31)/H,

a2,3 = g41(g11A1 +2g12g31)/H; a3,0 =−6g22(g11A3 +2g12g41)/H,

a3,1 = [12g12g22g41 − g21(2g12A4 +6mg11A3)/H,

a3,2 = [6g11g22g41 − g11g21(A4 −6mg41)]/H, a3,3 = g21(g11A3 +2g12g41)/H;

a4,0 =6g22(g11A1 +2g12g31)/H, a4,1 = g21(2g12A2 +6mg11A1)/H,

a4,2 = g11g21(A2 −6mg31)/H, a4,3 =−g21(g11A1 +2g12g31)/H,



. .   . . 236

where

H=6g41g22[2g12g31 + g11A1]− g21[g11(A1A4 −A2A3)

+2g12(g31A4 − g41A2)+6mg11(g31A3 − g41A1)],

A1 =2$g31 g
1

0

1
b(j)

dj+ g32%, A2 =6$mg31 + g31 g
1

0

j

b(j)
dj+ g32%,

A3 =2g41 g
1

0 g
j

0

1
b(z)

dz dj,

A4 =6mg41$1−g
1

0

1
s(j)

dj%+6g41 g
1

0 g
j

0

z

b(z)
dz dj−6g42,

gi1 = bi /(1+ bi ), i=1, 2, 3, 4, gi2 =1/(1+ bi ). i=1, 2, 3, 4.

 2: –

In this case, b2 and b4 are infinite, b1 and b3 are zero, the boundary excitations
become

f�1(t)= f*1 (t), f�2(t)= f2(t), f�3(t)= f*3 (t), f�4(t)= f4(t).

The coefficients of the shifting functions are

a1,0 =0, a1,1 = (3A3 −A4)/6, a1,2 =−1/2, a1,3 =1/6;

a2,0 =−1, a2,1 =−1, a2,2 =0, a2,3 =0;

a3,0 =0, a3,1 =−A4/6, a3,2 =0, a3,3 =1/6;

a4,0 =0, a4,1 =1, a4,2 =0, a4,3 =0,

where

A3 =2 g
1

0 g
j

0

1
b(z)

dz dj, A4 =6m$1−g
1

0

1
s(j)

dj%+6 g
1

0 g
j

0

z

b(z)
dz dj.

 3: –

In this case, b1, b2, b3 and b4 are infinite, the boundary excitations become

f�1(t)= f1(t), f�2(t)= f2(t), f�3(t)= f3(t), f�4(t)= f4(t).
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The coefficients of the shifting functions are

a1,0 =0, a1,1 = (A2A3 −A1A4)/H, a1,2 = (A4 −A2)/H,

a1,3 = (A1 −A3)/H;

a2,0 = (A2A3 −A1A4)+6m(A3 −A1), a2,1 =−6mA1/H,

a2,2 =−(A2 −6m)/H, a2,3 =A1/H;

a3,0 =0, a3,1 =−6mA3/H, a3,2 =−(A4 −6m)/H, a3,3 =A3/H;

a4,0 =0, a4,1 =6mA1/H, a4,2 = (A2 −6m)/H, a4,3 =−A1/H;

where

H=(A2A3 −A1A4)−6m(A3 −A1), A1 =2 g
1

0

1
b(j)

dj,

A2 =6$m+g
1

0

j

b(j)
dj%,

A3 =2 g
1

0 g
j

0

1
b(z)

dz dj, A4 =6m$1−g
1

0

1
s(j)

dj%+6 g
1

0 g
j

0

z

b(z)
dz dj.

 4: –

In this case, b1, b2 and b4 are infinite, b3 is zero, the boundary excitations become

f�1(t)= f1(t), f�2(t)= f2(t), f�3(t)= f*3 (t), f�4(t)= f4(t).

The coefficients of the shifting functions are

a1,0 =0, a1,1 = (6A3 −2A4)/H, a1,2 =−6/H, a1,3 =2/H;

a2,0 = (6A3 −2A4)−12m, a2,1 =−12m/H, a2,2 =−6/H, a2,3 =2/H;

a3,0 =0, a3,1 =−6mA3/H, a3,2 =−(A4 −6m)/H, a3,3 =A3/H;

a4,0 =0, a4,1 =12m/H, a4,2 =6/H, a4,3 =−2/H,

where

H=(6A3 −2A4)+12m, A3 =2 g
1

0 g
j

0

1
b(z)

dz dj,

A4 =6m$1−g
1

0

1
s(j)

dj%+6 g
1

0 g
j

0

z

b(z)
dz dj.
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 5: -

In this case, b1 and b2 are infinite, b3 and b4 are zero, the boundary excitations
become

f�1(t)= f1(t), f�2(t)= f2(t), f�3(t)= f*3 (t), f�4(t)= f*4 (t).

The coefficients of the shifting functions are

a1,0 =0, a1,1 =1, a1,2 =0, a1,3 =0;

a2,0 =1, a2,1 =0, a2,2 =0, a2,3 =0;

a3,0 =0, a3,1 =0, a3,2 =1/2, a3,3 =0;

a4,0 =0, a4,1 = m, a4,2 =1/2, a4,3 =−1/6.


